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Context

o Compressible multiphase flows with heterogeneities (bubbles, droplets)

o Average model, macroscopic description
o Rigorous derivation

> Full model: PDEs and source terms
» Mathematical theory
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Derivation of averaged models

o Averaging approach
[Drew & Passman '98, Ishii & Hibiki '06,...]

> Microscopic description
P Instantaneous local conservation laws for each separated phase
P> Jump conditions through the interfaces

> Averaging process
P Introduce time and/or volume scales, or random disturbances
P> Average the microscopic model wrt the small scales

v/ Baer-Nunziato type model
P 2 Euler systems, nonconservative coupling terms
P Transport of a void fraction, mechanical relaxation source terms
P Kinetic and thermodynamical relaxation source terms

X Closure laws

X Definition of the averaging operators
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Derivation of averaged models

o Averaging approach
[Drew & Passman '98, Ishii & Hibiki '06,...]
> Microscopic description

P Instantaneous local conservation laws for each separated phase
P> Jump conditions through the interfaces

> Averaging process

P Introduce time and/or volume scales, or random disturbances
P> Average the microscopic model wrt the small scales

v/ Baer-Nunziato type model

P 2 Euler systems, nonconservative coupling terms
P Transport of a void fraction, mechanical relaxation source terms
P Kinetic and thermodynamical relaxation source terms

X Closure laws
X Definition of the averaging operators

@ Homogenization approach

[Serre '01 & '01, E '92, Hillairet '07, Bresch & Huang '11, Bresch, Hillairet '15 & '19, Hillairet '18,
Bresch, Burtea & Lagoutiére '20,...]
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Homogenization for two-phase flows

Standard approach
@ Microscopic description

> Viscous flows (smooth enough solutions) for both phase
> Conditions through the interfaces (“perfect transducers”)

@ One-fluid model with high-oscillatory density solutions

@ Pass to the limit to deduce macroscopic quantities &y 4, of,4,p and @
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ar+ag =1, p=0fpf+ agpg

s +10.0; = — 1y — )0+ (b (p1) (7))
9 e

Ou(aspy) +0u(aspsu) =0,  9¢(agpg) + Os(Ggpet) = 0

9:(pu) + 0. (pu®) = 9.5

with 3 = 2o~ (820,(30) + 221(50)) |

afpgtagpy
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Homogenization for two-phase flows

Standard approach
@ Microscopic description

> Viscous flows (smooth enough solutions) for both phase
> Conditions through the interfaces (“perfect transducers”)

o One-fluid model with high-oscillatory density solutions

@ Pass to the limit to deduce macroscopic quantities @ 4, pf,4,p and @

ay +ag =1, p=0Qspy+ Qgpg

QgQ
Oy + udpay = —9 (g — pug)0eti + (ps(ps) — Pol(P }
iy = Grhe + Gty (g — or) (pr(Pr) — Pg(Pg))
Ou(@rps) + 0u(05pp) =0, B(@opy) + De(aypym) = 0
0 (pu) + 02 (pu®) = 9, %

with ¥ = s {d“ - (%ﬁpf(ﬁf) + 22 pg(ﬁg)”

Pros & Cons
v Fully rigorous
X Simple interface behaviors, one-velocity models

o Extensions: different EoS [Bresch & Hillairet '19], temperature [Hillairet '21], density
overlap [Bresch, Burtea & Lagoutiére ’20]
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Homogenization for two-phase flows

Standard approach
@ Microscopic description

> Viscous flows (smooth enough solutions) for both phase
> Conditions through the interfaces (“perfect transducers”) X

@ One-fluid model with high-oscillatory density solutions X
@ Pass to the limit to deduce macroscopic quantities &y 4, of,4,p and @
asy +ag =1, p=aypps+ agpg

QgQy o~ _ _
—————— (g — pf)02u+ (pr(ps) — Pg(pg)) + }
090Gy~ 1)0sn+ (01(55) = Do)
Oi(arpy) +8u(aspyu) =0,  8i(agpg) + du(@gpgtt) = 0
0 (pu) + 0. (pu®) = 9.%

wh S — _ Hakr - %v. (5 Y95 (5
with 3 = G fhgtagiy {01“ (“/ pr(pr) + MZ Pg(/)g)) + }

Ot0f + U0p0p =

+Additional relations

Goal [Hillairet, M. & Seguin '22|
o Introduce more complex interface behavior

o Couple different fluid models
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Outline/Methodology

IV > MY QO
o o
IC M Q@

@ Microscopic model with N bubbles

© Macroscopic to microscopic initial data

© Solve the microscopic model

@ Pass to the limit N — oo to deduce macroscopic quantities

@ Find the associated macroscopic evolution equations
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The microscopic model with N bubbles

Compressible Navier-Stokes equations

Ot (pius) + div(piu; ® u;) = divi;
with Y =2\ (D(uz) — %diV’ui]I;g) —+ ,u7d|vu7 — pi(pi)ﬂg

where i = [ (the fluid) or i = k (the k-th inclusion By), with k =1,..., N
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The microscopic model with N bubbles

Compressible Navier-Stokes equations

6tpz- + dlv(plul) = O

Ot (pius) + div(piu; ® u;) = divi;

with 3; = 2 (D(wi) — idivuils) + padivu; — pi(pi)ls
where i = [ (the fluid) or i = k (the k-th inclusion By), with k =1,..., N

Jump conditions
On each bubble boundary 0B;:

o Continuity of the velocity field Up = U

@ Surface tension (3 — Zp)n = ysn
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The microscopic model with N bubbles

Compressible Navier-Stokes equations

8tpz- + dlv(plm) = O
Ot (pius) + div(piu; ® u;) = divi;
with 3; = 2 (D(wi) — idivuils) + padivu; — pi(pi)ls

where i = [ (the fluid) or i = k (the k-th inclusion By), with k =1,..., N

Jump conditions
On each bubble boundary 0B;:
o Continuity of the velocity field Up = U

@ Surface tension (3 — Zp)n = ysn

Geometrical assumption
The bubbles Bj, remain spherical (translation, rotation, dilatation)

— D(uk) — %divukﬂg =0
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The one-dimensional microscopic model

By
Fo Br o F Fn
p— b | [ | ] ]
- O !
On the fluid domain F(t):
Oepy + Ou(prus) =0
Or(pruy) + 0z (ps(uy)?) = 023y
with Xy = pur0uuy — pr(py)
In each bubble By () = B(ck(t), Ri(t)) = (x,,,z;) of (constant) mass my:
my mile = Bp(t ) — Bp(t ay)
put) = e s . %
2Rk(t) = B =Tt w) + 2yt 7)) — 25 + 4
ug(t,z) = ¢ —|—&(x—c) mi '
RS =S T Ry k with X = pg0zur — Py | -
2Ry

v Well-posedness of the Cauchy problem (up to assumptions on the initial data)
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Outline/Methodology

IV > MY QO
o o
IC M O

© Macroscopic to microscopic initial data
© Solve the microscopic model
@ Pass to the limit N — oo to deduce macroscopic quantities

@ Find the associated macroscopic evolution equations

Héléne Mathis Compressible bubbly flow model Université de Montpellier 8/21



Macroscopic to microscopic initial data

At the macroscopic scale, both fluids are present everywhere in the domain Q)
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Macroscopic to microscopic initial data
At the macroscopic scale, both fluids are present everywhere in the domain Q)

Macroscopic initial data
o Density of the fluid p} > pmin € H'(9)
o Density of the gas py > pmin € H'(9)
o Mean velocity @’ € H' ()
X Void fraction ay)
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Macroscopic to microscopic initial data

At the macroscopic scale, both fluids are present everywhere in the domain Q)

Macroscopic initial data
e Density of the fluid p} > pmin € H'(12)
o Density of the gas py > pmin € H'(9)
o Mean velocity 4 € H*(Q)
X Void fraction ay)

Reconstruction of gas-bubble distribution
o Probability distribution of the bubbles, in position = and radius r

Sy = Sg(z,7) € L'(Q x RT)

Moments of the probability distribution S :
o 1—st order moment ~ void fraction

ay(x) = / (2r) Sy (z,r)dr
R+
o 0—th order moment (~~ gas “interfacial area”)
B = [ S
R+
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Macroscopic to microscopic initial data

Family of microscopic initial data to be constructed from SJ, pf , and a®

For any bubble number N > 1:
@ Define a bubble distribution from SO to get (c, () R(N>) —1,...,N
@ Define the densities

pi(0,2)  on FN)(0)
P (0,2)  on B (0)

© Define the velocities

uf (0, z) on FM)(0)
;N)’O and RI(CN%O on B,EN)(O)
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Outline/Methodology

IV > Y QO
o o
IC M O
o
o

© Solve the microscopic model
@ Pass to the limit N — oo to deduce macroscopic quantities

@ Find the associated macroscopic evolution equations
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Solve the microscopic model

Scaling
o my, RY, |F7| and 7 behave as N~!

Microscopic Cauchy problem, independent of N |[Hillaivet, M., Seguin 22

Consider compatible initial data and the scaling. Then there exists 7., > 0, independent
of N, such that

N N N N N N
(((’l(c >/RI<€ >)k:11 N7p(f )au(f )a(p}(c )7U](€ >)k:1,m,N)

a00g

exists and is unique

o T, taken smaller and smaller along the proof
o Combine energy and regularity estimates, independent of N

@ Smoothness of the velocity u;N) obtained by extended stress tensors
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Héléne Mathis Compressible bubbly flow model

Outline/Methodology

Ic) > MY QO
(2] o
IC M Q@
o
9
(5]

@ Pass to the limit N — oo to deduce macroscopic quantities

@ Find the associated macroscopic evolution equations
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Convergence results

» Due to relative compactness (up to extraction of subsequences)

Mixture unknowns
o Linear extended velocity

a™) = U;N)on F™and u;(cN)O" BJ(CN)» k=1,...,N

such that @) — @ in L?((0,7); L*()) when N — +o0
o Linear extension of ¥; and X, over ) ~~ Distinct stress tensors

_ — + -
1 L T Triq 1
such that

S, BN 5, 8, in L2((0,T); H' (2)) when N — 400
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Convergence results
» Evolution equations on fluid and bubble unknowns

Bubble unknowns

(N)
o Density pg Zk 1Pk )IB,C with p(N) M
2Ry,
1
o Interfacial area/covolume fg N = Zk lf,iN)lgk with f(N)
2N Ry,
N FSNY) — By, fy in L7((0,T0) x ) when N — 400

Fluid unknowns
o Characteristic function of the fluid domain ") = 1.v)
XM —~apin L((0,T) x Q) —w* and 0<a;<1ae
o Density (defined on 2)
P — by in L2((0,T0) x Q) when N — 400
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Outline/Methodology

Ic) > MY QO
(2] o
IC M @
(%) N
(2]
(5]
(% ) N — oo
@ Find the associated macroscopic evolution equations
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Which evolution equations do we expect?

Immiscibility constraint

e Void fraction equation & 4, accounting for mechanical relaxation

Partial mass conservations with a¢ps and a4p,

@ Momentum equation with pu with mixture density p
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Which evolution equations do we expect?

o Immiscibility constraint
e Void fraction equation & 4, accounting for mechanical relaxation
e Partial mass conservations with afpy and a,p,

@ Momentum equation with pu with mixture density p

~~ Pass to the limit in nonlinear combinations of Y™/ (¢, z), p™(t,z) and fg<N>(t.,;L')

v Nonlinear convergence (in the sense of Young measures)
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The key ingredient

Nonlinear function b € C'' ([0, 1] x RT x R™) and consider the sequence

b ™M (t,x) = b ™ (¢, ), p N (8, ), FN (8, 2)) V(@) € (0,T) x Q

Nonlinear convergence

The sequence (b)) satisfies

3b™N) 18, BN @MY 4 (926 pM) 1956 N _pMN)9,a™N) =0 in D'((0,T)xQ)

Moreover, there exists b € L>°((0,7) x ) such that

b b, in L((0,T) x Q) — w* when N — 400
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Some examples

Considering b\ = (V) and (V) =1 — y(") gives b = a; and b = a,

The immiscibility constraint holds

af+ay =1
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Some examples

Considering b\ = (V) and (V) =1 — y(") gives b = a; and b = a,

The immiscibility constraint holds

af+ay =1

Considering b(") = éN) gives b = f,

The interfacial area f, satisfies

8tfg + 8Z(fgﬂ) =0
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The macroscopic model

Macroscopic closed system

as+ay =1, pP=agpr+ Qgpg _
agly _ _ _ _Je

—_— — pyp)0zu+ (pr(pf) — p - ST:|

G 0y = S Gty )0 ()~ Pal)

Oufg + 0x(fgti) =0

Ou(aspy) +0u(aspsu) =0,  9¢(agpg) + O(Ggpgt) = 0

0 (pu) + 0 (p*a) = 0.5

with & = — Hatr {&Dﬂ - (%pf(ﬁf) + %pg(ﬁg)> -

QfHgtagny

atc_tf +4 ﬁaz@f =

R
Pt
| I
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The macroscopic model

Macroscopic closed system

ay+ag =1, p=Qyps+ Qgpg
Sy~ )00+ (b (55) = o)) = 70 2
B B Qfpg + Qgfif

Ocfg + 8m(fqﬂ) =0

Ou(aspy) +0u(aspsu) =0,  9¢(agpg) + O(Ggpgt) = 0

0 (pu) + 0 (p*a) = 0.5

8tC_Yf +4 ﬁamdf =

with £ = 0t o.a— (S2p5(00) + 5200060 ) - 1]
Additional kinetic equation
1

o Distribution function in position and radius St(N) =N 2=t Ocp (), N Ry (1)

(S™N.B) = (S4,8), in C([0,T])

o Probability distribution S, satisfies

08y — 0(34) + 00 ((r(Sg + Dy (B9)) +75/2) 54) = 0

Hg

e 0-th order moment f,(x) = [, Sy(z.r)dr
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To sum up

Comments on the macroscopic model
o Two-pressure one-velocity two-phase flow model

> Both phases are compressible and viscous
> Extension of Bresch & Hillairet models: mechanical relaxation, surface tension, not a
“one-fluid" model

o Additional description

> New variable f,: interfacial area in 3D? B
> Kinetic equation on the probability distribution S, wrt (¢, z,r)
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To sum up

Comments on the macroscopic model
o Two-pressure one-velocity two-phase flow model

> Both phases are compressible and viscous
» Extension of Bresch & Hillairet models: mechanical relaxation, surface tension, not a
“one-fluid" model

o Additional description

> New variable f,: interfacial area in 3D? B
> Kinetic equation on the probability distribution S, wrt (¢, z,r)

To be continued &b
o Comparison with other bubbly flow models

o 3D extension, at least formal...
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To sum up

Comments on the macroscopic model
o Two-pressure one-velocity two-phase flow model

> Both phases are compressible and viscous
» Extension of Bresch & Hillairet models: mechanical relaxation, surface tension, not a
“one-fluid" model

o Additional description

> New variable f,: interfacial area in 3D? B
> Kinetic equation on the probability distribution S, wrt (¢, z,r)

To be continued &b
o Comparison with other bubbly flow models

o 3D extension, at least formal...

Thank you for your attention!
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