Direct numerical simulation of granular media and suspensions

Taking close interactions into account

Ecole 2022 du GdR MathGeoPhy

Aline Lefebvre - Lepot
28 octobre 2022
Suspensions and granular media.

Macroscopic, non-brownian entities
Rheology: ”the branch of physics concerned with the flow and change of shape of matter”

[Collins English Dictionary]

- flow, segregation, mixing, blocking, collapse...

Macroscopic behaviour
A complex behaviour!

Multi-particle interactions
Contact Friction
Shape of particles
Local micro-structure
Non-local effects

Active domain of research
Need for numerical simulations
Numerical simulations. The difficulties.

- Macroscopic behaviour
- Steady state and time average

⇒ Large number of particles
⇒ Long time simulations

Need for fast N-body computations
Numerical simulations. The difficulties.

- Dense suspensions → Close interactions due to the fluid

Need for methods taking lubrication into account
Numerical simulations. The difficulties.

- Dense suspensions
- Granular media

⇒ Solid contacts between particles

Molecular Dynamics

Explicit force

Continuous penalization method

[Cundall, Strack, 1979]

Contact law

Inelastic contacts
Coulomb friction law

Explicit solution for 2 particles

Multi-contact problem

Need for a stable algorithm to deal with contacts
Overview.

Granular media
- Rheological study
 - S. Faure, P. Gondret, A. Seguin
- Granular collapse
 - PhD H. Martin, Y. Maday, A. Mangeney, B. Maury

Suspensions
- Solid contacts
- Lubrication
- Direct fluid solvers
- RheoSuNN
- Anti-rheology
- Inelastic contact
 - [B. Maury]
- Frictional contact
 - PhD H. Martin, Y. Maday, A. Mangeney, B. Maury
- Gluey contact
 - [B. Maury]
- Lubrication effects on the flow
 - [B. Merlet, F. Nabet, F. Vergnet]
- BEM solvers
 - [F. Alouges, M. Aussal, F. Pigeonneau, A. Sellier, L. Faria]
- FEM solvers
 - CAFES
 - [B. Fabrèges, L. Gouarin]

SCoPI

ANR RheoSuNN
Taking lubrication into account in the fluid solver.

Granular media
- Rheological study
 - S. Faure, P. Gondret, A. Seguin
- Granular collapse
 - PhD H. Martin, Y. Maday, A. Mangeney, B. Maury

Suspensions
- Solid contacts
- Lubrication
 - Gluey contact
 - B. Maury
- Direct fluid solvers
 - BEM solvers
 - F. Alouges, M. Aussal, F. Pigeonneau, A. Sellier, L. Faria
 - FEM solvers
 - B. Fabrèges, L. Gouarin

ANR RheoSuNN

SCoPI

Inelastic contact
- B. Maury
Frictional contact
- PhD H. Martin, Y. Maday, A. Mangeney, B. Maury

Lubrication effects on the flow
- B. Merlet, F. Nabet, F. Vergnet

BEM solvers
- F. Alouges, M. Aussal, F. Pigeonneau, A. Sellier, L. Faria

FEM solvers
- B. Fabrèges, L. Gouarin
Taking lubrication into account in the fluid solver.

- **A singular problem**
 - Correction of the flow?
 - Non-spherical particles?

\[-\mu \Delta \mathbf{u} + \nabla p = 0 \quad \text{in } \mathcal{F} \]
\[\nabla \cdot \mathbf{u} = 0 \quad \text{in } \mathcal{F} \]
\[\mathbf{u} = \mathbf{u}^* \quad \text{on } \partial B \]

\[\| \mathbf{u} - \mathbf{u}_h \| \leq C \| (\mathbf{u}, p) \| h^\alpha \]

Blows up when the distance goes to zero…

An accurate method to include lubrication forces in numerical simulations of dense suspensions. With B. Merlet, and T. N. Nguyen. JFM, 769 (2015)
Taking lubrication into account in the fluid solver.

\[
(u_h^{\text{new}}, p_h^{\text{new}}) = (u^{\text{sing}}, p^{\text{sing}}) + (u_h^{\text{reg}}, p_h^{\text{reg}})
\]

An accurate method to include lubrication forces in numerical simulations of dense suspensions. With B. Merlet, and T. N. Nguyen. JFM, 769 (2015)
Taking lubrication into account in the fluid solver.

\[(u_{new}^h, p_{new}^h) = (u^{sing}, p^{sing}) + (u^{reg}_h, p^{reg}_h)\]

An accurate method to include lubrication forces in numerical simulations of dense suspensions. With B. Merlet, and T. N. Nguyen. JFM, 769 (2015)

Taking lubrication into account in the fluid solver.

\[(u_{h}^{\text{new}}, p_{h}^{\text{new}}) = (u^{\text{sing}}, p^{\text{sing}}) + (u_{h}^{\text{reg}}, p_{h}^{\text{reg}})\]

\[-\mu \Delta u^{\text{reg}} + \nabla p^{\text{reg}} = \mu \Delta u^{\text{sing}} - \nabla p^{\text{sing}} \quad \text{in } \mathcal{F}\]

\[\nabla \cdot u^{\text{reg}} = -\nabla \cdot u^{\text{sing}} \quad \text{in } \mathcal{F}\]

\[u^{\text{reg}} = u^{*} - u^{\text{sing}} \quad \text{on } \partial B\]
Taking lubrication into account in the fluid solver.

\[(u_{h}^{\text{new}}, p_{h}^{\text{new}}) = (u^{\text{sing}}, p^{\text{sing}}) + (u_{h}^{\text{reg}}, p_{h}^{\text{reg}})\]

\[-\mu \Delta u^{\text{reg}} + \nabla p^{\text{reg}} = \mu \Delta u^{\text{sing}} - \nabla p^{\text{sing}} \quad \text{in } \Omega\]
\[\nabla \cdot u^{\text{reg}} = -\nabla \cdot u^{\text{sing}} \quad \text{in } \Omega\]
\[u^{\text{reg}} = u^{\ast} - u^{\text{sing}} \quad \text{on } \partial B\]

\[\|u - u_{h}^{\text{new}}\| \leq C \|(u^{\text{reg}}, p^{\text{reg}})\| h^{\alpha}\]

An accurate method to include lubrication forces in numerical simulations of dense suspensions. With B. Merlet, and T. N. Nguyen. JFM, 769 (2015)
Taking lubrication into account in the fluid solver.

\[(u_h^{\text{new}}, p_h^{\text{new}}) = (u^{\text{sing}}, p^{\text{sing}}) + (u_h^{\text{reg}}, p_h^{\text{reg}})\]

\[-\mu \Delta u^{\text{reg}} + \nabla p^{\text{reg}} = \mu \Delta u^{\text{sing}} - \nabla p^{\text{sing}} \quad \text{in } F\]
\[\nabla \cdot u^{\text{reg}} = -\nabla \cdot u^{\text{sing}} \quad \text{in } F\]
\[u^{\text{reg}} = u^* - u^{\text{sing}} \quad \text{on } \partial B\]

\[\|u - u_h^{\text{new}}\| \leq C \|(u^{\text{reg}}, p^{\text{reg}})\| h^\alpha\]

An accurate method to include lubrication forces in numerical simulations of dense suspensions. With B. Merlet, and T. N. Nguyen. JFM, 769 (2015)
Taking lubrication into account in the fluid solver.
Stable and convex contact algorithms.

Granular media
- Rheological study
 - [S. Faure, P. Gondret, A. Seguin]
- Granular collapse
 - [PhD H. Martin, Y. Maday, A. Mangeney, B. Maury]
- Inelastic contact
 - [B. Maury]
- Frictional contact
 - [PhD H. Martin, Y. Maday, A. Mangeney, B. Maury]
- SCoPI

Suspensions
- Lubrication
- Gluey contact
 - [B. Maury]
- Lubrication effects on the flow
 - [B. Merlet, F. Nabet, F. Vergnet]

Direct fluid solvers
- BEM solvers
 - [F. Alouges, M. Aussal, F. Pigeonneau, A. Sellier, L. Faria]
- FEM solvers
 - [B. Fabrèges, L. Gouarin]

ANR RheoSuNN

Inelastic contact

Frictional contact

Granular collapse
Stable and convex contact algorithms.

Multi-contact problem

Inelastic contacts
Coulomb law

Non-Smooth Contact Dynamics

Implicit force
\[d \geq 0 \]

Non-smooth convex analysis
[Moreau, Jean, 1992-1999]
Stable and convex contact algorithms.

Inelastic contact

\[
\min_{v \in K} \frac{1}{2} \| v - v^{k+1} \|_M
\]

\[
K = \{ v, \quad D^k + dt \nabla D^k \cdot v \geq 0 \}
\]

Inelastic contact with friction

An optimization-based model for dry granular flows: application to granular collapse on erodible beds, with H. Martin, A. Mangeney, Y. Maday, B. Maury, Submitted.
Stable and convex contact algorithms.

Inelastic contact

\[
\min_{v \in K} \frac{1}{2} \|v - V^{k+1}\|_M
\]

\[
K = \{v, \ D^k + dt \nabla D^k \cdot v \geq 0\}
\]

Inelastic contact with friction

Linear constraint

SCoPI

An optimization-based model for dry granular flows: application to granular collapse on erodible beds, with H. Martin, A. Mangeney, Y. Maday, B. Maury, Submitted.
Stable and convex contact algorithms.

Inelastic contact

\[\min_{v \in K} \frac{1}{2} \| v - v^{k+1} \|_M \]

\[K = \{ v, \ D^k + dt \nabla D^k \cdot v \geq 0 \} \]

Inelastic contact with friction

\[\min_{v \in K_\mu} \frac{1}{2} \| u - U^{k+1} \|_M \]

\[K_\mu = \{ u, \ D^k + dt \nabla D^k \cdot v \geq \mu dt |Tu| \} \]

SCoPI

[H. Martin]

\[\frac{v^{k+1} - v^k}{dt} = f_{ext} + f_n n^k \]

\[D^k + dt \nabla D^k \cdot v^{k+1} \geq 0 \]

\[f_n \geq 0 + \text{compl.} \]

[Maury, 2006]

An optimization-based model for dry granular flows: application to granular collapse on erodible beds, with H. Martin, A. Mangeney, Y. Maday, B. Maury, Submitted.
Stable and convex contact algorithms.

Inelastic contact

\[
\min_{v \in K} \frac{1}{2} \| v - v^{k+1} \|_M
\]

\[K = \{ v, \; D^k + dt \nabla D^k \cdot v \geq 0 \}\]

- Implicit algorithms
- No need to detect the contacts times
- Convex minimization problems at each time step

\[
m \frac{v^{k+1} - v^k}{dt} = f_{ext} + f_n n^k
\]

\[D^k + dt \nabla D^k \cdot v^{k+1} \geq 0\]

\[f_n \geq 0 + \text{compl.}\]

[Maury, 2006]

Inelastic contact with friction

\[
\min_{v \in K_\mu} \frac{1}{2} \| u - U^{k+1} \|_M
\]

\[K_\mu = \{ u, \; D^k + dt \nabla D^k \cdot v \geq \mu dt |T u| \}\]

- Linear constraint
- Conic constraint

SCoPi

[H. Martin]

- Implicit algorithms
- No need to detect the contacts times
- Convex minimization problems at each time step

\[
m \frac{v^{k+1} - v^k}{dt} = f_{ext} + (f_n n^k + f_t)
\]

\[J \frac{\omega^{k+1} - \omega^k}{dt} = r \wedge (f_n n^k + f_t)\]

\[D^k + dt \nabla D^k \cdot v^{k+1} \geq \mu dt |T u^{k+1}|\]

\[f_n \geq 0 + \text{compl.}\]

Coulomb \((v^{k+1}, \omega^{k+1}, f_n, f_t)\)

[Tassora, Negrut, Anitescu, 2008]
Stable and convex contact algorithms.

- Inelastic contacts
- Spherical particles
- SCoPI

Rheology

Chains of forces

Clustering and flow around a sphere moving into a grain cloud. With A. Seguin, S. Faure, and P. Gondret.
In: The European Physical Journal E 39.6 (2016)
Stable and convex contact algorithms.

Friction Spherical particles Hugo Martin [LJLL, IPGP]

An optimization-based model for dry granular flows: application to granular collapse on erodible beds, with H. Martin, A. Mangeney, Y. Maday, B. Maury, Submitted, hal-03790427
Stable and convex contact algorithms.

Friction
Spherical particles
Hugo Martin [LJLL, IPGP]

An optimization-based model for dry granular flows: application to granular collapse on erodible beds, with H. Martin, A. Mangeney, Y. Maday, B. Maury, Submitted, hal-03790427
Stable and convex contact algorithms.

- Convergence
- Non-spherical particles
- Hélène Bloch [CMAP]

\[D^k + d t \nabla D^k \cdot v^{k+1} \geq \mu d t |Tu^{k+1}| \]

- Influence of convexification?
- Very few convergence results based on compacity methods
- Order of convergence?

Numerical study:
\[\text{err} = O(dt) \]

On convex numerical schemes for inelastic contacts with friction, with H. Bloch, Proceeding SMAI2021, Submitted
Stable and convex contact algorithms.

- Convergence
- Non-spherical particles
- Hélène Bloch [CMAP]

On convex numerical schemes for inelastic contacts with friction, with H. Bloch, Proceeding SMAI2021, Submitted
Stable and convex contact algorithms.

Coupling with the gluey particle model

Numerical simulation of gluey particles, M2AN 43 (2009)
Stable and convex contact algorithms.

Coupling with the gluey particle model

Numerical simulation of gluey particles, M2AN 43 (2009)
Stable and convex contact algorithms.

耦合与粘性粒子模型
Stable and convex contact contact algorithms.

Granular media
- **Solid contacts**
 - Rheological study
 - [S. Faure, P. Gondret, A. Seguin]
 - Inelastic contact
 - [B. Maury]
 - Frictional contact
 - [PhD H. Martin, Y. Maday, A. Mangeney, B. Maury]
 - Gluey contact
 - [B. Maury]
 - Convergence?
- Coupling gluey and frictional contacts
- **SCoPI**

Suspensions
- **Lubrication**
 - Lubrication effects on the flow
 - [B. Merlet, F. Nabet, F. Vergnet]
 - Extension to fictitious domain solvers
- **Direct fluid solvers**
 - BEM solvers
 - [F. Alouges, M. Aussal, F. Pigeonneau, A. Sellier, L. Faria]
 - FEM solvers
 - CAFES
 - [B. Fabrèges, L. Gouarin]

ANR RheoSuNN
Granular media

- Rheological study
 - [S. Faure, P. Gondret, A. Seguin]
- Granular collapse
 - [PhD H. Martin, Y. Maday, A. Mangeney, B. Maury]
- Inelastic contact
 - [B. Maury]
- Frictional contact
 - [PhD H. Martin, Y. Maday, A. Mangeney, B. Maury]
- Gluey contact
 - [B. Maury]
- SCoPI

Suspensions

- Convergence?
- Coupling gluey and frictional contacts

Lubrication

- Lubrication effects on the flow
 - [B. Merlet, F. Nabet, F. Vergnet]
- Extension to fictitious domain solvers

Direct fluid solvers

- BEM solvers
 - [F. Alouges, M. Aussal, F. Pigeonneau, A. Sellier, L. Faria]
- FEM solvers
 - [B. Fabrèges, L. Gouarin]
- CAFES
 - Fabrèges, L. Gouarin

ANR RheoSuNN