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Model

A viscous suspension is a collection of N � 1 small rigid particles

immersed in a viscous fluid.

Here : spherical particles Bi = B(xi ,R), 1 ≤ i ≤ N.

R � 1 (typical length scale of the flow)

• Stokes equations in ΩN := R3 \ (∪N
i=1Bi ):

–∆u +∇p = f , div u = 0, x ∈ ΩN (St)

• No-slip condition

u|∂Bi
= vi + ωi × (x − xi ), ∀i . (NS)
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• Newton’s dynamics

ẋi = vi ,

mv̇i =

∫
∂Bi

σ(u, p)n + fi ,

Jω̇i =

∫
∂Bi

σ(u, p)n × (x − xi ) + ti

(N)

σ(u, p) = 2D(u)− pId Newtonian stress tensor.

Later on, we will neglect inertia:

ẋi = vi ,

0 =

∫
∂Bi

σ(u, p)n + fi

0 =

∫
∂Bi

σ(u, p)n × (x − xi ) + ti

(N’)

No contact : (xi ) ∈ U = {X ∈ R3N , |xi − xj | > 2R, i 6= j}.
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Remark: For any f ∈ L6/5(R3), X = (xi ) ∈ U , V = (vi ),

ω = (ωi ), there is a unique solution of (St)-(NS), linear in (V , ω):

u = u[X ,V , ω](x) ∈ Ḣ1(ΩN)

Back to (N): yields an ODE

˙( X
v
ω

)
= FN

(
X
v
ω

)
Back to (N’): balance of forces and torques yields an invertible

linear system on
(

V
ω

)
, with coefficients depending on X :

Ẋ = FN(X )

Theorem [Hillairet-Sabbagh’22]

For any initial data with X init ∈ U , these ODES are well-posed

globally in time, with X (t) ∈ U for all times.
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Large N asymptotics

General Questions :

• Behaviour of u = uN , X = (xi ,N), V = (vi ,N), ω = ωi ,N as

N → +∞ ?

• Derivation of a reduced (continuous) model ?

Here :

• what is the mean effect of the rigid particles on the viscosity

of the suspension ?

• Can we derive a fluid model, with an effective viscosity ?

Subproblem: PDE block

(St)+(NS) + balance of forces and torques (and fi = ti = 0).

Asymptotics of this subsystem, under geometrical and statistical

assumptions on the distribution of x1, . . . , xN ?
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Examples :

• Convergence of the empirical measure:

1

N

N∑
i=1

δxi → ρ = ρ(x)

ρ bounded, supported in the closure of a bounded domain O.

Homogeneous case : ρ = 1
|O|1O.

• Assumption on the minimal distance between the particles.

• Stationarity :

Given 0 < ε� 1, a bounded domain O, and a stationary

point process X on R3 of intensity 1. Then,

{x1, . . . , xN} = εX ∩O

• Addition of mixing assumptions . . .
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Dilute suspensions

Solid volume fraction:

φ := N
4

3
πR3/|O| small

Two different types of dilutions:

i) Large interparticle distance. Typically

|xi − xj | ≥ cN−1/3

ii) Thinning of a point process: [GV’21, Duerinckx-Gloria’21]

Case i) The method of reflections :

Approximation through an iteration using single ball solutions.

uapp = u∅ +
N∑

i=1

u1
i +

N∑
i=1

u2
i ,+ . . . , the same for vapp

i , ωapp
i .
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• u∅ sees no ball:

−∆u∅ +∇p∅ = f , div u∅ = 0 in R3.

• u1
i corrects u∅ on Bi , neglecting Bj , j 6= i .

−∆u1
i +∇p1

i = 0, div u1
i = 0 in R3 \ Bi

u1
i |∂Bi

= v1
i + ω1

i × (x − xi )

− u∅(xi )− ω∅(xi )× (x − xi )− D(u∅)(xi )(x − xi )∫
∂Bi

σ(u1
i , p

1
i )n = 0, . . .

• u2
i corrects u1

j , j 6= i , neglecting Bj , j 6= i , etc
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Explicit solutions at each step.

Effective viscosity : One finds a stresslet

ui = u[D(u∅)(xi )](x − xi ) on R3 \ Bi

u[S ](x) = −3S : x ⊗ x

8π|x |5
x − 3

R2

20

Sx

|x |5
+ 3R2S : (x ⊗ x)

|x |7
x .

On R3, after extension:

−∆uapp +∇papp = f 1ΩN
+ div

(5φ

N
|O|
∑

i

D(u∅)(xi )
σ∂Bxi

4πR2

)
+ O(R2)

If N → +∞, at order O(φ):

−∆ueff +∇peff = (1− φ)f + 5φ|O|div
(
D(u∅)ρ

)
, div ueff = 0.

The first equation can be replaced consistently at order φ by:

− div
(

2
(
1 +

5

2
φ|O|ρ

)
D(ueff )

)
+∇peff = (1− φ)f
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Remark : the effective model is a Stokes equation with a modified

viscosity coefficient µeff 6= 1. In the homogeneous case,

µeff = (1 +
5

2
φ) in O : Einstein’s viscosity

Difficulties: justifying the method of reflections may be hard,

because stresslets have

1) a slow decay : obstacle to the convergence of
∑N

i=1 u
k
i .

2) a singularity at the origin : when particles are close, error

terms are not so small.

Refs: [Sanchez-Palencia’82],[Haines-Mazzucato’10], [Niethammer-Schubert’19],[Hillairet-Wu’19],

[GV-Höfer’20], [Duerinckx-Gloria’21]

Einstein’s formula is now proved for φ small independent of N,

under minimal conditions.
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Example: [GV-Höfer’20]

∃δ > 0, ∀i 6= j , |xi − xj | ≥ (2 + δ)R (A2’)

∃C , α > 0, s.t. ∀η, ]{i , |xi − xj | ≤ ηN−1/3} ≤ CηαN. (A2”)

Question: Can we go beyond Einstein’s formula ? Up to o(φ2) ?

Various formulas in the literature, for periodic and random

stationary distributions of particles ... formulas do not always

coincide !

Difficulties:

- Pairwise interactions must be taken into account.

- Microscopic structure plays a role: knowing ρ is not enough.
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One can show in the homogeneous case that if µ2 exists, it is given

by:

µ2S : S = lim
N

( 1

N2

∑
i 6=j

M(xi−xj )−
∫
R3×R3

M(x−y)ρ(x)ρ(y)dxdy
)

for M a Calderon-Zygmund operator (degree −3).

Remark: the limit is not zero ! Due to the singularity.

Question: Under what conditions on the xi ’s does this mean field

limit exist ?

OK under stationarity and separation assumptions: combines

• arguments à la Serfaty in the analysis of Coulomb gases

• homogenization arguments.
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Connection to homogenization

We focus on the Stokes subproblem (in a bounded domain Ω):

−∆u +∇p = f , div u = 0 ∈ ΩN ,

u = ui + ωi × (x − xi ) at ∂Bi , u|∂Ω = 0∫
∂Bi

σ(u, p)n =

∫
∂Bi

σ(u, p)n × (x − xi ) = 0.

Question : What if φ ∼ 1 ? No perturbative approach.

”Degenerate problem of homogenization”: obtained as the limit

when µ→∞ of a Stokes problem with viscosity coefficient

µN = 1 in ΩN , µN = µ in ∪ Bi
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Analogue problem for the laplacian: studied in depth by Jikov.

Extension to Stokes by [Duerinckx-Gloria]: under usual stationarity

and ergodicity conditions, and if

|xi − xj | ≥ (2 + δ)R, δ > 0, ∀i 6= j

the solution u = uN converges as N → +∞ to the system

−2div(AD(u)) +∇p = (1− φ)f , in Ω,

div u = 0, in Ω,

u|∂Ω = 0

Remark : One can relax much the assumption on the minimal

distance: still true under a moment bound on the diameter of the

clusters of close particles.
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Network approximation for dense suspensions

Introduced by [Borcea’98], [Berlyand’01], . . . . See

[Berlyand-Kolpakov-Novikov’13], [GV-Girodroux-Lavigne’22]. .

A tool to treat dense suspensions. So far, mostly used for fixed N.

Crucial observation: If two balls Bi and Bj of unit radius are δij

close, the energy of the solution u of

−∆u +∇p = 0, div u = 0, in R3 \ (Bi ∪ Bj )

u|∂Bi
= vi , u|∂Bj

= vj ,

has an energy that scales like∫
|∇u|2 ∼

|vi − vj |2

δij
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Model reduction:

One can replace the continuous geometry by a weighted graph G :{
i ∼ j if Bi ,Bj neighbours

weight δij
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Finiteness of the energy of the corrector corresponds to

boundedness of discrete minimal energies on GL (restriction to

balls in the cube of size L), of the form

E(GL, S) = min
(vi )

1

L3

∑
i∼j

|vi − vj |2

δij
+

1

L3

∑
i

|ui − Sxi |2

In particular, these energies are bounded under a moment

condition on the clusters.

Open problems:

• better understanding of the asymptotics of these discrete

energies.

• what is the limit of uN when the corrector is not well-defined ?

• coupling with the particles ?
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