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A viscous suspension is a collection of N > 1 small rigid particles
immersed in a viscous fluid.

Here : spherical particles B; = B(x;, R), 1 < i < N.
R < 1 (typical length scale of the flow)
e Stokes equations in Qy :=R3\ (UM, B)):

-Au+Vp=1f, divu=0, xecQpu (St)

e No-slip condition

u‘aBi =V, t+w; X (X —X,'), Vi. (NS)



e Newton's dynamics

Xi = Vi,

mv; = u,p)n -+ f;,
/88,-0( P) (N)
Jw; = / o(u,p)n x (x — x;) + t
0B;

o(u,p) = 2D(u) — pId Newtonian stress tensor.



e Newton's dynamics
Xj = Vi,
mv; = / o(u,p)n+ fi,
0B;
Jw; = / o(u,p)n x (x — x;) + t;
0B;
o(u,p) = 2D(u) — pId Newtonian stress tensor.

Later on, we will neglect inertia:

Xj = Vj,
0:/ o(u,p)n+fi
9B

0:/ o(u,p)n X (x — x;) + t;
0B;

No contact : (x;)) €U = {X e RN |x; — xj| > 2R, i # j}.



Remark: For any f € L8/3(R3), X = (x;) €U, V = (v}),
w = (wj), there is a unique solution of (St)-(NS), linear in (V,w):

u = u[X, V,w](x) € H{(Qn)

Back to (N): yields an ODE

(5)=7v(3)
Back to (N'): balance of forces and torques yields an invertible

linear system on (), with coefficients depending on X:

X = Fn(X)

Theorem [Hillairet-Sabbagh’22]

For any initial data with X™* € ¢/, these ODES are well-posed
globally in time, with X(t) € U for all times.



Large N asymptotics

General Questions :

e Behaviour of u=uy, X =(xjn), V= (vin), w=wjn as
N — +o0 ?
e Derivation of a reduced (continuous) model ?

Here :

e what is the mean effect of the rigid particles on the viscosity
of the suspension 7
e Can we derive a fluid model, with an effective viscosity 7

Subproblem: PDE block
(St)+(NS) + balance of forces and torques (and f; = t; = 0).

Asymptotics of this subsystem, under geometrical and statistical

assumptions on the distribution of xy,...,xy ?



Examples :

e Convergence of the empirical measure:

1 N
5 20 = p=p(x)
i=1

p bounded, supported in the closure of a bounded domain O.
Homogeneous case : p = ﬁlo-

e Assumption on the minimal distance between the particles.
e Stationarity :

Given 0 < € <« 1, a bounded domain O, and a stationary
point process X on R3 of intensity 1. Then,

{xl,..../xN}:sXﬁ(’)

e Addition of mixing assumptions ...



Dilute suspensions

Solid volume fraction:
4
¢ = Nng’RB/‘O’ small
Two different types of dilutions:

i) Large interparticle distance. Typically

R -1/3
1 =
|xi — xj| > cN

ii) Thinning of a point process:
Case i) The method of reflections :

Approximation through an iteration using single ball solutions.

N N
uPP = 0 4 E ut + E u?,+..., the same for viPP wiPP.
i=1 i=1



o 1" sees no ball:
AL+l =f, divid=0 in R3
1 0

e u; corrects u” on B;, neglecting B}, j # .

—Au} +Vpt =0, divu}=0 in R\ B
ujlog, = vit +w} x (x — x;)
— () — W (x;) x (x — x;) — D(u®)(x)(x — x;)

/ o(ul, p)n =0,
OB;

.U2

i

corrects ujl, J # I, neglecting B;, j # i, etc



Explicit solutions at each step.

Effective viscosity : One finds a stresslet

ui = u[D(u®)(x)](x — x;)) on R3\ B;

35 : x®x R? Sx »S: (x® x)
Sl(x) = — 22 X 37 3R2> X 2%
ul3)(x) sr® . 20 xP T X7~
On R3, after extension:
: UGBX,
—AuPPP + VpPP = flg  + div ( ’(9|ZD 4 R2)

+ O(R?)
If N — +o0, at order O(¢):
— Au + Vp = (1 - ¢)f +5¢6|0|div (D(u”)p), div u* =0.

The first equation can be replaced consistently at order ¢ by:

— div (2(1 + gqﬁ\()\p)D(uefF)) + Vpf = (1 - ¢)f



Remark : the effective model is a Stokes equation with a modified
viscosity coefficient ;¢ = 1. In the homogeneous case,

5
perr = (1 + §¢) in O : Einstein's viscosity

Difficulties: justifying the method of reflections may be hard,
because stresslets have

1) a slow decay : obstacle to the convergence of 3% | uk.
2) a singularity at the origin : when particles are close, error

terms are not so small.

RefS [Sanchez-Palencia’82],[Haines-Mazzucato'10], [Niethammer-Schubert'19], [Hillairet-Wu'19],

[GV-Hofer'20], [Duerinckx-Gloria'21]

Einstein's formula is now proved for ¢ small independent of N,
under minimal conditions.



Example: [GV-Hofer'20]

30 > 0,

JC,a > 0,s.t. Vn,

Vi#J, Ixi—xjl = (2+ )R (A2')

80, | — x;| <pN~YV3) < CpeN. (A27)
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Example: [GV-Hofer'20]

340 >0, Vi#j, |X,' — XJ" > (2 + (S)R (A2’)

3C,a > 0,s.t. Wy, #{i,|x — x| <npN7V3} < CpoN. (A2

Question: Can we go beyond Einstein's formula ? Up to o(¢?) ?
Various formulas in the literature, for periodic and random
stationary distributions of particles ... formulas do not always
coincide !

Difficulties:

- Pairwise interactions must be taken into account.

- Microscopic structure plays a role: knowing p is not enough.
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One can show in the homogeneous case that if up exists, it is given
by:

1255 = lim (13 3" MGi—x)— [ Mlx—y)o()nly)cly )

o 3% R3
[ R3xR

for M a Calderon-Zygmund operator (degree —3).

Remark: the limit is not zero ! Due to the singularity.

Question: Under what conditions on the x;'s does this mean field

limit exist ?
OK under stationarity and separation assumptions: combines

e arguments a la Serfaty in the analysis of Coulomb gases

e homogenization arguments.
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Connection to homogenization

We focus on the Stokes subproblem (in a bounded domain Q):
—Au+Vp=f, divu=0¢€Qy,
u=ui+w X (x—x) at 9B;, ulsga =0
/ o(u,p)n = / o(u,p)n x (x —x;) = 0.
JOB; JOB;
Question : What if ¢ ~ 1 ? No perturbative approach.

"Degenerate problem of homogenization”: obtained as the limit
when 1 — 0o of a Stokes problem with viscosity coefficient

pn=1in Qy, puy=pin UB;
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Analogue problem for the laplacian: studied in depth by Jikov.

Extension to Stokes by [Duerinckx-Glorial: under usual stationarity

and ergodicity conditions, and if
== @+8)R, 60, Vij
the solution u = up converges as N — —+o00o to the system

—2div(AD(u)) + Vp = (1 — ¢)f, in Q,
divu=0, in Q,
U’aQ =0
Remark : One can relax much the assumption on the minimal

distance: still true under a moment bound on the diameter of the

clusters of close particles.
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Network approximation for dense suspensions

Introduced by . See

A tool to treat dense suspensions. So far, mostly used for fixed N.

Crucial observation: If two balls B; and B; of unit radius are J;;
close, the energy of the solution u of

~Au+Vp=0, divu=0, inR3\(B/UB))

ulog; = vi, ulag; = v,

has an energy that scales like
2
/|vu|2 -~ ’V" — V_/‘
0jj
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Model reduction:

One can replace the continuous geometry by a weighted graph G:
i ~j if B;, Bj neighbours
weight d;;

ii5)



Finiteness of the energy of the corrector corresponds to
boundedness of discrete minimal energies on G, (restriction to
balls in the cube of size L), of the form

&(GL, S) —mln—z|v' L3Z|u,—5x/’

IN_j

In particular, these energies are bounded under a moment

condition on the clusters.

Open problems:

e better understanding of the asymptotics of these discrete
energies.

e what is the limit of up when the corrector is not well-defined ?

e coupling with the particles ?
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