The hydrostatic approximation for stratified fluids An open problem

Vincent Duchêne

CNRS & IRMAR, Univ. Rennes 1

École du GDR MathGeoPhy Institut Henri Poincaré, Paris, octobre 2022

Joint work with Roberta Bianchini (CNR, Rome)

Outline

2 The problem with hydrostatic equations

e problem with hydrostatic equations

A result with eddy diffusivity

Benefits from isopycnal coordinates

The initial set of equations

Motivated by geophysical flows, we study the heterogeneous, incompressible Euler equations with gravity force:¹

$$\begin{aligned} \partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) + \partial_z (\rho w) &= 0, \\ \rho (\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla_{\mathbf{x}}) \mathbf{u} + w \partial_z \mathbf{u}) + \nabla_{\mathbf{x}} P &= 0, \\ \rho (\partial_t w + \mathbf{u} \cdot \nabla_{\mathbf{x}} w + w \partial_z w) + \partial_z P + g \rho &= 0, \\ \nabla_{\mathbf{x}} \cdot \mathbf{u} + \partial_z w &= 0, \\ \text{boundary conditions.} \end{aligned}$$

The velocity field is denoted $(\mathbf{u}, w) : \Omega \to \mathbb{R}^d \times \mathbb{R}$, the density $\rho : \Omega \to \mathbb{R}^+_*$. The pressure $P : \Omega \to \mathbb{R}$ is reconstructed through the elliptic equations

 $-\nabla_{\mathbf{x}} \cdot \left(\frac{1}{\rho} \nabla_{\mathbf{x}} P\right) - \partial_{z} \left(\frac{1}{\rho} \partial_{z} P\right) = \nabla_{\mathbf{x}} \cdot \left((\mathbf{u} \cdot \nabla_{\mathbf{x}}) \mathbf{u} + w \partial_{z} \mathbf{u} \right) + \partial_{z} \left(g \rho + \mathbf{u} \cdot \nabla_{\mathbf{x}} w + w \partial_{z} w \right).$

Using the hydrostatic approximation, the system becomes ...

¹We are discarding the Coriolis force because we are interested in short-time stability. We are also discarding (for now) eddy viscosity and diffusivity.

e problem with hydrostatic equations

A result with eddy diffusivity

Benefits from isopycnal coordinates

The initial set of equations

Motivated by geophysical flows, we study the heterogeneous, incompressible Euler equations with gravity force:¹

$$\begin{aligned} \partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) + \partial_z (\rho w) &= 0, \\ \rho (\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla_{\mathbf{x}}) \mathbf{u} + w \partial_z \mathbf{u}) + \nabla_{\mathbf{x}} P &= 0, \\ \rho (\partial_t w + \mathbf{u} \cdot \nabla_{\mathbf{x}} w + w \partial_z w) + \partial_z P + g \rho &= 0, \\ \nabla_{\mathbf{x}} \cdot \mathbf{u} + \partial_z w &= 0, \\ \text{boundary conditions.} \end{aligned}$$

The velocity field is denoted $(\mathbf{u}, w) : \Omega \to \mathbb{R}^d \times \mathbb{R}$, the density $\rho : \Omega \to \mathbb{R}^+_*$. The pressure $P : \Omega \to \mathbb{R}$ is reconstructed through the elliptic equations

$$-\nabla_{\mathbf{x}} \cdot \left(\frac{1}{\rho} \nabla_{\mathbf{x}} P\right) - \partial_{z} \left(\frac{1}{\rho} \partial_{z} P\right) = \nabla_{\mathbf{x}} \cdot \left((\mathbf{u} \cdot \nabla_{\mathbf{x}}) \mathbf{u} + w \partial_{z} \mathbf{u} \right) + \partial_{z} \left(g \rho + \mathbf{u} \cdot \nabla_{\mathbf{x}} w + w \partial_{z} w \right).$$

Using the hydrostatic approximation, the system becomes ...

¹We are discarding the Coriolis force because we are interested in short-time stability. We are also discarding (for now) eddy viscosity and diffusivity.

he problem with hydrostatic equations

Benefits from isopycnal coordinates

The hydrostatic approximation

The heterogeneous, incompressible Euler equations with gravity force

$$\partial_{t}\rho + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) + \partial_{z}(\rho w) = 0,$$

$$\rho(\partial_{t}\mathbf{u} + (\mathbf{u} \cdot \nabla_{\mathbf{x}})\mathbf{u} + w\partial_{z}\mathbf{u}) + \nabla_{\mathbf{x}}P = 0,$$

$$\rho(\partial_{t}w + \mathbf{u} \cdot \nabla_{\mathbf{x}}w + w\partial_{z}w) + \partial_{z}P + \rho = 0,$$

$$\nabla_{\mathbf{x}} \cdot \mathbf{u} + \partial_{z}w = 0,$$

boundary conditions.
(E)

with the hydrostatic approximation becomes

$$\begin{cases} \partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) + \partial_z (\rho w) = 0, \\ \rho (\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla_{\mathbf{x}}) \mathbf{u} + w \partial_z \mathbf{u}) + \nabla_{\mathbf{x}} P = 0, \\ \partial_z P = -\rho, \qquad \Longrightarrow \qquad P = P|_{z=z_{\text{surf}}} + \int_{\cdot}^{z_{\text{surf}}} \rho \, dz \quad (\mathsf{H}) \\ \partial_z w = -\nabla_{\mathbf{x}} \cdot \mathbf{u}, \qquad \Longrightarrow \qquad w = w|_{z=z_{\text{bot}}} - \int_{z_{\text{bot}}}^{\cdot} \nabla_{\mathbf{x}} \cdot \mathbf{u} \, dz \\ \text{boundary conditions.} \end{cases}$$

Qn: stability of shear flows $(\rho, \mathbf{u})(t, \mathbf{x}, z) = (\underline{\rho}(z), \underline{\mathbf{u}}(z))$?

The problem with hydrostatic equations

(partial and biased) state of the art on the hydrostatic equations

Homogeneous case: $\rho \equiv 1$.

- Spectral stability of the linearized system about shear flows, under the Rayleigh criterion $\underline{\mathbf{u}}''(z) \neq 0$. [Rayleigh (1880)][Arnold][Drazin&Reid]
- Ill-posedness of the linearized system about certain shear flows. [Renardy '09]
- Well-posedness of the (nonlinear) system in Sobolev spaces under the Rayleigh criterion. [Masmoudi&Wong '12] (after [Grenier '99], [Brenier '03])

Stably stratified case: $\partial_z \rho < 0$.

• Spectral stability of the linearized system about shear flows, under the Miles and Howard criterion $\frac{1}{4}|\underline{\mathbf{u}}'(z)|^2 \leq \frac{-\underline{\rho}'(z)}{\rho(z)}$. [Miles '61][Howard '61]

٥

٩

Open problem

Well-posedness of the initial-value problem for the (linear or nonlinear) system?

Outline

2 The problem with hydrostatic equations

3 A result with eddy diffusivity

The problem with hydrostatic equations $\bigcirc \bigcirc \bigcirc$

A result with eddy diffusivity

Benefits from isopycnal coordinates

The linearized system about shear flows

Let us linearize the system

$$\begin{aligned} &\langle \partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) + \partial_z (\rho w) = 0, \\ &\rho (\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla_{\mathbf{x}}) \mathbf{u} + w \partial_z \mathbf{u}) + \nabla_{\mathbf{x}} P = 0, \\ &\partial_z P = -\rho, \\ &\partial_z w = -\nabla_{\mathbf{x}} \cdot \mathbf{u}, \\ &\text{boundary conditions (periodic).} \end{aligned}$$
(H)

about shear solutions $(\rho, \mathbf{u})(t, \mathbf{x}, z) = (\underline{\rho}(z), \underline{\mathbf{u}}(z))$. We get

$$\begin{cases} \partial_t \rho + \underline{\mathbf{u}}(z) \cdot \nabla_{\mathbf{x}} \rho + \underline{\rho}'(z) w = 0, \\ \partial_t \mathbf{u} + (\underline{\mathbf{u}}(z) \cdot \nabla_{\mathbf{x}}) \mathbf{u} + \underline{\mathbf{u}}'(z) w + \frac{1}{\underline{\rho}(z)} \nabla_{\mathbf{x}} P = 0, \\ \partial_z P = -\rho, \qquad \qquad (\Longrightarrow P = \int_{\cdot}^1 \rho \, \mathrm{d}z \stackrel{\mathrm{def}}{=} \mathsf{L}\rho) \qquad (\mathsf{L}) \\ \partial_z w = -\nabla_{\mathbf{x}} \cdot \mathbf{u}, \qquad (\Longrightarrow w = -\int_0^{\cdot} \nabla_{\mathbf{x}} \cdot \mathbf{u} \, \mathrm{d}z = -\mathsf{L}^* \nabla_{\mathbf{x}} \cdot \mathbf{u}) \\ \text{boundary conditions (periodic).} \end{cases}$$

The problem with hydrostatic equations $\bigcirc \bullet \bigcirc$

A result with eddy diffusivity

Benefits from isopycnal coordinates

The linearized system about shear flows

Let us linearize the system

$$\begin{aligned} &\langle \partial_t \rho + \nabla_{\mathbf{x}} \cdot (\rho \mathbf{u}) + \partial_z (\rho w) = 0, \\ &\rho (\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla_{\mathbf{x}}) \mathbf{u} + w \partial_z \mathbf{u}) + \nabla_{\mathbf{x}} P = 0, \\ &\partial_z P = -\rho, \\ &\partial_z w = -\nabla_{\mathbf{x}} \cdot \mathbf{u}, \\ &\text{boundary conditions (periodic).} \end{aligned}$$
(H)

about shear solutions $(\rho, \mathbf{u})(t, \mathbf{x}, z) = (\underline{\rho}(z), \underline{\mathbf{u}}(z))$. We get

$$\begin{cases} \partial_t \rho + \underline{\mathbf{u}}(z) \cdot \nabla_{\mathbf{x}} \rho - \underline{\rho}'(z) \mathsf{L}^* \nabla_{\mathbf{x}} \cdot \mathbf{u} = \mathbf{0}, \\ \partial_t \mathbf{u} + (\underline{\mathbf{u}}(z) \cdot \nabla_{\mathbf{x}}) \mathbf{u} - \underline{\mathbf{u}}'(z) \mathsf{L}^* \nabla_{\mathbf{x}} \cdot \mathbf{u} + \frac{1}{\underline{\rho}(z)} \nabla_{\mathbf{x}} \mathsf{L} \rho = \mathbf{0}, \\ \text{boundary conditions (periodic).} \end{cases}$$
(L)

The linearized system enjoys a symmetric structure if $\rho'(z) < 0$, $\mathbf{\underline{u}}'(z) = \mathbf{0}$.

The problem with hydrostatic equations $\bigcirc \bullet \bigcirc$

A result with eddy diffusivity 000

Benefits from isopycnal coordinates

The linearized system about shear flows

$$\begin{aligned} \partial_t \rho + \underline{\mathbf{u}}(z) \cdot \nabla_{\mathbf{x}} \rho - \underline{\rho}'(z) \mathsf{L}^* \nabla_{\mathbf{x}} \cdot \mathbf{u} &= 0, \\ \partial_t \mathbf{u} + (\underline{\mathbf{u}}(z) \cdot \nabla_{\mathbf{x}}) \mathbf{u} - \underline{\mathbf{u}}'(z) \mathsf{L}^* \nabla_{\mathbf{x}} \cdot \mathbf{u} + \frac{1}{\underline{\rho}(z)} \nabla_{\mathbf{x}} \mathsf{L} \rho &= 0, \end{aligned}$$
(L) boundary conditions (periodic).

The linearized system enjoys a symmetric structure if $\rho'(z) < 0$, $\underline{\mathbf{u}}'(z) = \mathbf{0}$.

The problem with hydrostatic equations $\circ \bullet \circ$

A result with eddy diffusivity

Benefits from isopycnal coordinates

The linearized system about shear flows

$$\begin{aligned} \partial_t \rho + \underline{\mathbf{u}}(z) \cdot \nabla_{\mathbf{x}} \rho - \underline{\rho}'(z) \mathsf{L}^* \nabla_{\mathbf{x}} \cdot \mathbf{u} &= 0, \\ \partial_t \mathbf{u} + (\underline{\mathbf{u}}(z) \cdot \nabla_{\mathbf{x}}) \mathbf{u} - \underline{\mathbf{u}}'(z) \mathsf{L}^* \nabla_{\mathbf{x}} \cdot \mathbf{u} + \frac{1}{\underline{\rho}(z)} \nabla_{\mathbf{x}} \mathsf{L} \rho &= 0, \end{aligned}$$
(L) boundary conditions (periodic).

The linearized system enjoys a symmetric structure if $\underline{\rho}'(z) < 0$, $\underline{\mathbf{u}}'(z) = \mathbf{0}$.

The symmetric structure is ruined if $\underline{\mathbf{u}}'(z) \neq \mathbf{0}$.

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left(\rho , \frac{-1}{\underline{\rho}'(z)} \rho \right)_{L^2_{\mathbf{x},z}} + \left(\mathbf{u} , \underline{\rho}(z)\mathbf{u} \right)_{L^2_{\mathbf{x},z}} \right) = \left(\mathbf{u} , \underline{\rho}(z)\underline{\mathbf{u}}'(z)\mathbf{L}^* \nabla_{\mathbf{x}} \cdot \mathbf{u} \right)_{L^2_{\mathbf{x},z}}.$$

$$\rightsquigarrow \text{ no (obvious) control of an energy.}$$

The problem with hydrostatic equations $\circ \circ \bullet$

A result with eddy diffusivity 000

Benefits from isopycnal coordinates 000

Conclusion

$$\begin{cases} \partial_t \rho + \underline{\mathbf{u}}(z) \cdot \nabla_{\mathbf{x}} \rho - \underline{\rho}'(z) \mathsf{L}^* \nabla_{\mathbf{x}} \cdot \mathbf{u} = 0, \\ \partial_t \mathbf{u} + (\underline{\mathbf{u}}(z) \cdot \nabla_{\mathbf{x}}) \mathbf{u} - \underline{\mathbf{u}}'(z) \mathsf{L}^* \nabla_{\mathbf{x}} \cdot \mathbf{u} + \frac{1}{\underline{\rho}(z)} \nabla_{\mathbf{x}} \mathsf{L} \rho = 0, \end{cases}$$
(L) boundary conditions (periodic).

$$\frac{\mathrm{d}}{\mathrm{d}t} \left(\left(\rho , \frac{-1}{\underline{\rho}'(z)} \rho \right)_{L^2_{\mathbf{x},z}} + \left(\mathbf{u} , \underline{\rho}(z) \mathbf{u} \right)_{L^2_{\mathbf{x},z}} \right) = \left(\mathbf{u} , \underline{\rho}(z) \underline{\mathbf{u}}'(z) \mathsf{L}^* \nabla_{\mathbf{x}} \cdot \mathbf{u} \right)_{L^2_{\mathbf{x},z}}.$$

Possible high-frequency instabilities in the hydrostatic framework in the presence of shear velocity, $\underline{\mathbf{u}}'(z) \neq 0$, even under the Miles & Howard criterion. The stable stratification, $\rho'(z) < 0$, helps (a bit).

Possible ways around:

- Work in the analytic framework. e.g. [Kukavica, Temam, Vicol & Ziane '11]
- Add (horizontal) viscosity. e.g. [Cao, Li & Titi '16]
- Relax the hydrostatic approximation [Desjardins, Lannes & Saut '21]

Outline

2 The problem with hydrostatic equations

The problem with hydrostatic equation

with

Benefits from isopycnal coordinates

Eddy viscosity and diffusivity

The system studied in [Cao, Li & Titi '16] (among other works) is

$$\begin{aligned} \partial_t \rho + \mathbf{u} \cdot \nabla_{\mathbf{x}} \cdot \rho + w \partial_z \rho &= \kappa \Delta_{\mathbf{x}} \rho, \\ \rho(\partial_t \mathbf{u} + (\mathbf{u} \cdot \nabla_{\mathbf{x}}) \mathbf{u} + w \partial_z \mathbf{u}) + \nabla_{\mathbf{x}} P &= \nu \Delta_{\mathbf{x}} \mathbf{u}, \\ \partial_z P &= -\rho, \quad \partial_z w = -\nabla_{\mathbf{x}} \cdot \mathbf{u}, \\ \text{boundary conditions (periodic).} \end{aligned}$$
 (H_{\nu,\keta)}

The <u>horizontal</u> eddy viscosity ($\nu > 0$) and diffusivity ($\kappa > 0$) approximate effective isopycnal viscosity and diffusivity:

[Gent & McWilliams '90] propose the following parameterization

$$\begin{cases} \partial_{t}\rho + (\mathbf{u} + \mathbf{u}_{\star}) \cdot \nabla_{\mathbf{x}}\rho + (w + w_{\star})\partial_{z}\rho = 0, \\ \rho(\partial_{t}\mathbf{u} + ((\mathbf{u} + \mathbf{u}_{\star}) \cdot \nabla_{\mathbf{x}})\mathbf{u} + (w + w_{\star})\partial_{z}\mathbf{u}) + \nabla_{\mathbf{x}}P = 0, \\ \partial_{z}P = -\rho, \quad \partial_{z}w = -\nabla_{\mathbf{x}} \cdot \mathbf{u}, \\ \text{boundary conditions.} \\ \mathbf{u}_{\star} = \kappa \partial_{z} \left(\frac{\nabla_{\mathbf{x}}\rho}{\partial_{z}\rho}\right) , \quad w_{\star} = -\kappa \nabla_{\mathbf{x}} \cdot \left(\frac{\nabla_{\mathbf{x}}\rho}{\partial_{z}\rho}\right). \end{cases}$$
(H_{\kappa})

The problem with hydrostatic equations

A result with eddy diffusivity $\circ \circ \bullet$

Benefits from isopycnal coordinates 000

Main result

$$\begin{cases} \partial_t \rho + (\mathbf{u} + \mathbf{u}_{\star}) \cdot \nabla_{\mathbf{x}} \rho + (w + w_{\star}) \partial_z \rho = 0, \\ \rho (\partial_t \mathbf{u} + ((\mathbf{u} + \mathbf{u}_{\star}) \cdot \nabla_{\mathbf{x}}) \mathbf{u} + (w + w_{\star}) \partial_z \mathbf{u}) + \nabla_{\mathbf{x}} P = 0, \\ \partial_z P = -\rho, \quad \partial_z w = -\nabla_{\mathbf{x}} \cdot \mathbf{u}, \\ \text{boundary conditions (free surface),} \\ \mathbf{u}_{\star} = \kappa \partial_z \left(\frac{\nabla_x \rho}{\partial_z \rho} \right), \quad w_{\star} = -\kappa \nabla_{\mathbf{x}} \cdot \left(\frac{\nabla_x \rho}{\partial_z \rho} \right). \end{cases}$$
(H_{\kappa})

[R. Bianchini & VD]

For sufficiently regular data satisfying the (strict) stable stratification assumption

 $-\partial_z \rho|_{t=0} \ge \alpha > 0$

and for any $\kappa > 0$, there exists a unique (classical) solution to (H_{κ}) on the time interval [0, T] with

$$T^{-1} = C \left(1 + \kappa^{-1} \left(\left| \underline{\mathbf{u}}' \right|_{L_{z}^{2}}^{2} + M_{0}^{2} \right) \right),$$

where M_0 is the size of the initial deviation from the shear flow equilibrium $(\rho(z), \underline{\mathbf{u}}(z))$, and C depends only on M_0 , α and the size of $(\rho(z), \underline{\mathbf{u}}(z))$.

A result with eddy diffusivity

Benefits from isopycnal coordinates

Main result

[R. Bianchini & VD]

For sufficiently regular data satisfying the (strict) stable stratification assumption

 $-\partial_z \rho|_{t=0} \geq \alpha > \mathbf{0}$

and for any $\kappa>0,$ there exists a unique (classical) solution to $({\sf H}_\kappa)$ on the time interval [0,T] with

$$T^{-1} = C \left(1 + \kappa^{-1} \left(\left| \underline{\mathbf{u}}' \right|_{L^{2}_{\tau}}^{2} + M_{0}^{2} \right) \right),$$

where M_0 is the size of the initial deviation from the shear flow equilibrium $(\rho(z), \underline{\mathbf{u}}(z))$, and C depends only on M_0 , α and the size of $(\rho(z), \underline{\mathbf{u}}(z))$.

Remarks.

- We do not use viscosity (only diffusivity), nor analytic data;
- The destabilizing role of the shear velocity is apparent;
- Stable stratification is used in a crucial way in our proof;

 \rightsquigarrow we make use of isopycnal coordinates.

Outline

2 The problem with hydrostatic equations

3 A result with eddy diffusivity

A result with eddy diffusivity

Benefits from isopycnal coordinates $\bigcirc \bullet \bigcirc$

Isopycnal coordinates

We define the variable $h(t, \mathbf{x}, r) > 0$ from the density $\rho(t, \mathbf{x}, z)$ through

 $h \stackrel{\text{def}}{=} -\partial_r \zeta, \qquad \rho(t, \mathbf{x}, \zeta(t, \mathbf{x}, r)) = r, \quad \zeta(t, \mathbf{x}, \rho(t, \mathbf{x}, z)) = z.$

The problem with hydrostatic equation

Benefits from isopycnal coordinates $\bigcirc \bullet \bigcirc$

Isopycnal coordinates

We define the variable $h(t, \mathbf{x}, r) > 0$ from the density $\rho(t, \mathbf{x}, z)$ through

$$h \stackrel{\text{def}}{=} -\partial_r \zeta, \qquad \rho(t, \mathbf{x}, \zeta(t, \mathbf{x}, r)) = r, \quad \zeta(t, \mathbf{x}, \rho(t, \mathbf{x}, z)) = z.$$

The system

$$\begin{cases} \partial_t \rho + (\mathbf{u} + \mathbf{u}_{\star}) \cdot \nabla_{\mathbf{x}} \rho + (w + w_{\star}) \partial_z \rho = 0, \\ \rho (\partial_t \mathbf{u} + ((\mathbf{u} + \mathbf{u}_{\star}) \cdot \nabla_{\mathbf{x}}) \mathbf{u} + (w + w_{\star}) \partial_z \mathbf{u}) + \nabla_{\mathbf{x}} P = 0, \\ \partial_z P = -\rho, \quad \partial_z w = -\nabla_{\mathbf{x}} \cdot \mathbf{u}, \\ \text{boundary conditions (free surface).} \end{cases}$$
(H_{\kappa})

reads in isopycnal coordinates

$$\begin{cases} \partial_t h + \nabla_{\mathbf{x}} \cdot (h\mathbf{u}) = \kappa \Delta_{\mathbf{x}} h, \\ r \Big(\partial_t \mathbf{u} + \big(\big(\mathbf{u} + \kappa \frac{-\nabla_{\mathbf{x}} h}{h} \big) \cdot \nabla_{\mathbf{x}} \big) \mathbf{u} \Big) + \nabla_{\mathbf{x}} \psi = 0, \end{cases}$$
(H_{\kappa})

where

$$\psi(t, \mathbf{x}, r) \stackrel{\text{def}}{=} \rho_0 \int_{\rho_0}^{\rho_1} h(t, \mathbf{x}, r') \, \mathrm{d}r' + \int_{\rho_0}^{r} \int_{r'}^{\rho_1} h(t, \mathbf{x}, r'') \, \mathrm{d}r'' \, \mathrm{d}r'.$$

he problem with hydrostatic equations

Benefits from isopycnal coordinates $\circ \circ \bullet$

The system in isopycnal coordinates

$$\begin{cases} \partial_t h + \nabla_{\mathbf{x}} \cdot (h\mathbf{u}) = \kappa \Delta_{\mathbf{x}} h, \\ r \Big(\partial_t \mathbf{u} + \big(\big(\mathbf{u} + \kappa \frac{-\nabla_{\mathbf{x}} h}{h} \big) \cdot \nabla_{\mathbf{x}} \big) \mathbf{u} \Big) + \nabla_{\mathbf{x}} \psi = 0. \end{cases}$$
(H_{\kappa})

where $\psi(t, \mathbf{x}, r) \stackrel{\text{def}}{=} \rho_0 \int_{\rho_0}^{\rho_1} h(t, \mathbf{x}, r') \, \mathrm{d}r' + \int_{\rho_0}^r \int_{r'}^{\rho_1} h(t, \mathbf{x}, r'') \, \mathrm{d}r'' \, \mathrm{d}r'.$

Remarks:

- The eddy diffusivity of [Gent & McWilliams '90] is nice and simple.
- The advection in the variable z (or r) has disappeared.
- The domain is flattened.
- The system is easily discretized (multilayer framework) [Adim, w.i.p.]
- The system enjoys a partial symmetric structure analogous as the one exhibited in the Eulerian coordinates, but the symmetry defect involves an extra derivative on ζ ^{def} = ∫_r h (and not u).

 \rightsquigarrow The proof of our main result is based on the energy method on (H_{κ}), using product, commutator, composition estimates in anisotropic Sobolev spaces.

Thoughts to go

- The well-posedness of the heterogeneous hydrostatic equations, without diffusivity or viscosity, is an open problem.
- Isopycnal coordinates are interesting for numerical <u>and also</u> theoretical analyses.

Thoughts to go

- The well-posedness of the heterogeneous hydrostatic equations, without diffusivity or viscosity, is an open problem.
- Isopycnal coordinates are interesting for numerical <u>and also</u> theoretical analyses.

Thank you for your attention