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The initial set of equations

Motivated by geophysical flows, we study the heterogeneous,
incompressible Euler equations with gravity force:1

∂tρ+∇x · (ρu) + ∂z(ρw) = 0,

ρ
(
∂tu+ (u · ∇x)u+ w∂zu

)
+∇xP = 0,

ρ
(
∂tw + u · ∇xw + w∂zw

)
+ ∂zP + g ρ = 0,

∇x · u+ ∂zw = 0,

boundary conditions.

(E)

The velocity field is denoted (u,w) : Ω → Rd × R, the density ρ : Ω → R+
⋆ .

The pressure P : Ω → R is reconstructed through the elliptic equations

−∇x ·
(
1
ρ∇xP)−∂z

(
1
ρ∂zP

)
= ∇x ·

(
(u ·∇x)u+w∂zu

)
+∂z

(
gρ+u ·∇xw +w∂zw

)
.

Using the hydrostatic approximation, the system becomes ...

1We are discarding the Coriolis force because we are interested in short-time stability.
We are also discarding (for now) eddy viscosity and diffusivity.
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The hydrostatic approximation
The heterogeneous, incompressible Euler equations with gravity force

∂tρ+∇x · (ρu) + ∂z(ρw) = 0,

ρ
(
∂tu+ (u · ∇x)u+ w∂zu

)
+∇xP = 0,

ρ
(
∂tw + u · ∇xw + w∂zw

)
+ ∂zP + ρ = 0,

∇x · u+ ∂zw = 0,

boundary conditions.

(E)

with the hydrostatic approximation becomes

∂tρ+∇x · (ρu) + ∂z(ρw) = 0,

ρ
(
∂tu+ (u · ∇x)u+ w∂zu

)
+∇xP = 0,

∂zP = −ρ, =⇒ P = P|z=zsurf +
∫ zsurf
· ρ dz

∂zw = −∇x · u, =⇒ w = w |z=zbot −
∫ ·
zbot

∇x · u dz

boundary conditions.

(H)

Qn: stability of shear flows (ρ,u)(t, x, z) = (ρ(z),u(z))?
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(partial and biased) state of the art on the
hydrostatic equations

Homogeneous case: ρ ≡ 1.

Spectral stability of the linearized system about shear flows, under the
Rayleigh criterion u′′(z) ̸= 0. [Rayleigh (1880)][Arnold][Drazin&Reid]

Ill-posedness of the linearized system about certain shear flows. [Renardy ’09]

Well-posedness of the (nonlinear) system in Sobolev spaces under the
Rayleigh criterion. [Masmoudi&Wong ’12] (after [Grenier ’99], [Brenier ’03])

Stably stratified case: ∂zρ < 0.

Spectral stability of the linearized system about shear flows, under the

Miles and Howard criterion 1
4 |u

′(z)|2 ≤ −ρ′(z)

ρ(z) . [Miles ’61][Howard ’61]

Open problem
Well-posedness of the initial-value problem for the (linear or nonlinear) system?
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The linearized system about shear flows

Let us linearize the system

∂tρ+∇x · (ρu) + ∂z(ρw) = 0,

ρ
(
∂tu+ (u · ∇x)u+ w∂zu

)
+∇xP = 0,

∂zP = −ρ,
∂zw = −∇x · u,
boundary conditions (periodic).

(H)

about shear solutions (ρ,u)(t, x, z) = (ρ(z),u(z)). We get

∂tρ+ u(z) · ∇xρ+ ρ′(z)w = 0,

∂tu+ (u(z) · ∇x)u+ u′(z)w + 1
ρ(z)∇xP = 0,

∂zP = −ρ, (=⇒ P =
∫ 1
· ρ dz

def
= Lρ)

∂zw = −∇x · u, (=⇒ w = −
∫ ·
0 ∇x · u dz = −L⋆∇x · u)

boundary conditions (periodic).

(L)
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∂zw = −∇x · u,
boundary conditions (periodic).

(H)

about shear solutions (ρ,u)(t, x, z) = (ρ(z),u(z)). We get
∂tρ+ u(z) · ∇xρ− ρ′(z)L⋆∇x · u = 0,

∂tu+ (u(z) · ∇x)u− u′(z)L⋆∇x · u+ 1
ρ(z)∇xLρ = 0,

boundary conditions (periodic).

(L)

The linearized system enjoys a symmetric structure if ρ′(z) < 0, u′(z) = 0.
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The linearized system about shear flows
∂tρ+ u(z) · ∇xρ− ρ′(z)L⋆∇x · u = 0,

∂tu+ (u(z) · ∇x)u− u′(z)L⋆∇x · u+ 1
ρ(z)∇xLρ = 0,

boundary conditions (periodic).

(L)

The linearized system enjoys a symmetric structure if ρ′(z) < 0, u′(z) = 0.

The symmetric structure is ruined if u′(z) ̸= 0.

d

dt

((
ρ , −1

ρ′(z)ρ
)
L2x,z

+
(
u , ρ(z)u

)
L2x,z

)
=

(
u , ρ(z)u′(z)L⋆∇x · u

)
L2x,z
.

⇝ no (obvious) control of an energy.
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Conclusion
∂tρ+ u(z) · ∇xρ− ρ′(z)L⋆∇x · u = 0,

∂tu+ (u(z) · ∇x)u− u′(z)L⋆∇x · u+ 1
ρ(z)∇xLρ = 0,

boundary conditions (periodic).

(L)

d

dt

((
ρ , −1

ρ′(z)ρ
)
L2x,z

+
(
u , ρ(z)u

)
L2x,z

)
=

(
u , ρ(z)u′(z)L⋆∇x · u

)
L2x,z
.

Possible high-frequency instabilities
in the hydrostatic framework

in the presence of shear velocity, u′(z) ̸= 0,
even under the Miles & Howard criterion.

The stable stratification, ρ′(z) < 0, helps (a bit).

Possible ways around:

Work in the analytic framework. e.g. [Kukavica, Temam, Vicol & Ziane ’11]

Add (horizontal) viscosity. e.g. [Cao, Li & Titi ’16]

Relax the hydrostatic approximation [Desjardins, Lannes & Saut ’21]
5 / 10
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Eddy viscosity and diffusivity

The system studied in [Cao, Li & Titi ’16] (among other works) is
∂tρ+ u · ∇x · ρ+ w∂zρ = κ∆xρ,

ρ
(
∂tu+ (u · ∇x)u+ w∂zu

)
+∇xP = ν∆xu,

∂zP = −ρ, ∂zw = −∇x · u,
boundary conditions (periodic).

(Hν,κ)

The horizontal eddy viscosity (ν > 0) and diffusivity (κ > 0) approximate
effective isopycnal viscosity and diffusivity:
[Gent & McWilliams ’90] propose the following parameterization

∂tρ+ (u+ u⋆) · ∇xρ+ (w + w⋆)∂zρ = 0,

ρ
(
∂tu+ ((u+ u⋆) · ∇x)u+ (w + w⋆)∂zu

)
+∇xP = 0,

∂zP = −ρ, ∂zw = −∇x · u,
boundary conditions.

(Hκ)

with u⋆ = κ∂z

(
∇xρ

∂zρ

)
, w⋆ = −κ∇x ·

(
∇xρ

∂zρ

)
.
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Main result

∂tρ+ (u+ u⋆) · ∇xρ+ (w + w⋆)∂zρ = 0,

ρ
(
∂tu+ ((u+ u⋆) · ∇x)u+ (w + w⋆)∂zu

)
+∇xP = 0,

∂zP = −ρ, ∂zw = −∇x · u,
boundary conditions (free surface),

u⋆ = κ∂z

(
∇xρ
∂zρ

)
, w⋆ = −κ∇x ·

(
∇xρ
∂zρ

)
.

(Hκ)

[R. Bianchini & VD]

For sufficiently regular data satisfying the (strict) stable stratification assumption

−∂zρ|t=0 ≥ α > 0

and for any κ > 0, there exists a unique (classical) solution to (Hκ) on the time
interval [0,T ] with

T−1 = C
(
1 + κ−1

(∣∣u′∣∣2
L2
z
+M2

0

))
,

where M0 is the size of the initial deviation from the shear flow equilibrium
(ρ(z),u(z)), and C depends only on M0, α and the size of (ρ(z),u(z)).
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Main result
[R. Bianchini & VD]

For sufficiently regular data satisfying the (strict) stable stratification assumption

−∂zρ|t=0 ≥ α > 0

and for any κ > 0, there exists a unique (classical) solution to (Hκ) on the time
interval [0,T ] with

T−1 = C
(
1 + κ−1

(∣∣u′∣∣2
L2
z
+M2

0

))
,

where M0 is the size of the initial deviation from the shear flow equilibrium
(ρ(z),u(z)), and C depends only on M0, α and the size of (ρ(z),u(z)).

Remarks.

We do not use viscosity (only diffusivity), nor analytic data;

The destabilizing role of the shear velocity is apparent;

Stable stratification is used in a crucial way in our proof;

⇝ we make use of isopycnal coordinates.
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Isopycnal coordinates

We define the variable h(t, x, r) > 0 from the density ρ(t, x, z) through

h
def
= −∂rζ, ρ(t, x, ζ(t, x, r)) = r , ζ(t, x, ρ(t, x, z)) = z .

0

8 / 10



Context The problem with hydrostatic equations A result with eddy diffusivity Benefits from isopycnal coordinates

Isopycnal coordinates

We define the variable h(t, x, r) > 0 from the density ρ(t, x, z) through

h
def
= −∂rζ, ρ(t, x, ζ(t, x, r)) = r , ζ(t, x, ρ(t, x, z)) = z .

The system
∂tρ+ (u+ u⋆) · ∇xρ+ (w + w⋆)∂zρ = 0,

ρ
(
∂tu+ ((u+ u⋆) · ∇x)u+ (w + w⋆)∂zu

)
+∇xP = 0,

∂zP = −ρ, ∂zw = −∇x · u,
boundary conditions (free surface).

(Hκ)

reads in isopycnal coordinates{
∂th +∇x · (hu) = κ∆xh,

r
(
∂tu+

(
(u+ κ−∇xh

h ) · ∇x

)
u
)
+∇xψ = 0,

(Hκ)

where

ψ(t, x, r)
def
= ρ0

∫ ρ1

ρ0

h(t, x, r ′) dr ′ +

∫ r

ρ0

∫ ρ1

r ′
h(t, x, r ′′) dr ′′ dr ′.
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The system in isopycnal coordinates

{
∂th +∇x · (hu) = κ∆xh,

r
(
∂tu+

(
(u+ κ−∇xh

h ) · ∇x

)
u
)
+∇xψ = 0.

(Hκ)

where ψ(t, x, r)
def
= ρ0

∫ ρ1
ρ0

h(t, x, r ′) dr ′ +
∫ r
ρ0

∫ ρ1
r ′ h(t, x, r ′′) dr ′′ dr ′.

Remarks:

The eddy diffusivity of [Gent & McWilliams ’90] is nice and simple.

The advection in the variable z (or r) has disappeared.

The domain is flattened.

The system is easily discretized (multilayer framework) [Adim, w.i.p.]

The system enjoys a partial symmetric structure analogous as the one
exhibited in the Eulerian coordinates, but the symmetry defect

involves an extra derivative on ζ
def
=

∫
r h (and not u).

⇝ The proof of our main result is based on the energy method on (Hκ),
using product, commutator, composition estimates in anisotropic Sobolev spaces.
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Thoughts to go

The well-posedness of the heterogeneous hydrostatic equations,
without diffusivity or viscosity, is an open problem.

Isopycnal coordinates are interesting for numerical and also theoretical
analyses.

Thank you for your attention
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